首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High temperature sensitivity of notched AISI 304L stainless steel tests
Authors:W Y Lu  M F Horstemeyer  J S Korellis  R B Grishabar  D Mosher
Institution:aMaterials and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551-0969, USA;bUniversity of California, Davis, CA 95616, USA
Abstract:Experiments were designed to determine the failure characteristics of AISI 304L stainless steel under different stress triaxialities and temperatures up to 70% of melt. The data show that as temperature increases the displacement to failure of notched tensile specimens increases. The complex interaction of deformation mechanisms, such as twinning and dynamic recrystallization, appears to negate the damage accumulation at higher temperatures. Microstructural analyses and finite element simulations indicate that voids nucleate, grow, and coalesce more rapidly as temperature and triaxiality increase. Finite element simulations were performed to analyze temperature dependence on the Cocks–Ashby void growth model. The finite element simulations qualitatively show a double-knee that was observed in the notched experimental specimens after loading. The combined experimental–numerical study indicates that failure can be defined at several points in the notch tests when: (1) macrovoids starts to form, (2) the load drop-off occurs, and (3) total perforation of the specimen occurs. These three points occur simultaneously in ambient conditions but occur at different displacements at higher temperatures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号