首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Green's function approach to study the propagation of SH‐wave in piezoelectric layer influenced by a point source
Authors:Abhishek Kumar Singh  Amrita Das  Kshitish Ch Mistri  Amares Chattopadhyay
Institution:Department of Applied Mathematics, IIT (ISM), Dhanbad, Jharkhand, India
Abstract:Green's function technique serves as a powerful tool to find the particle displacements due to SH‐wave propagation in layer of a shape different from the space between two parallel planes. Therefore, the present paper undertook to study the propagation of SH‐wave in a transversely isotropic piezoelectric layer under the influence of a point source and overlying a heterogeneous substrate using Green's function technique. The coupled electromechanical field equations are solved with the aid of Green's function technique. Expression for displacements in both layer and substrate, scalar potential and finally the dispersion relation is obtained analytically for the case when wave propagates along the direction of layering. Numerical computations are carried out and demonstrated with the aid of graphs for six different piezoelectric materials namely PZT‐5H ceramics, Barium titanate (BaTiO3) ceramics, Silicon dioxide (SiO2) glass, Borosilicate glass, Cobalt Iron Oxide (CoFe2O4), and Aluminum Nitride (AlN). The effects of heterogeneity, piezoelectric and dielectric constants on the dispersion curve are highlighted. Moreover, comparative study is carried out taking the phase velocity for different piezoelectric materials on one hand and isotropic case on the other. Dispersion relation is reduced to well‐known classical Love wave equation with a view to illuminate the authenticity of problem. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:SH‐wave  piezoelectric material  heterogeneous  point source  Green's function  dielectric  subclass 74J15
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号