首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microbubble mediated sonoporation of cells in suspension: Clonogenic viability and influence of molecular size on uptake
Authors:Raffi Karshafian  Sanya Samac  Peter N Burns
Institution:a Medical Biophysics, University of Toronto, Toronto, ON, Canada
b Imaging Research, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
Abstract:This work investigates whether the application of sonoporation is limited by the size of a macromolecule being delivered and by the ability of cells to proliferate following uptake. KHT-C cells in suspension were exposed to variations in ultrasound pressure (0-570 kPa) and microbubble shell-type (lipid and protein) at fixed settings of 500 kHz centre frequency, 32 μs pulse duration, 3 kHz pulse repetition frequency and 2 min insonation. Reversible permeability (PR), defined as the number of cells stained with FITC-dextran and unstained with propidium iodide (i.e., PI-viable), was measured with flow cytometry for marker molecules ranging from 10 kDa to 2 MDa in size. Viable permeability (PV) defined as the number of permeabilised cells that maintained their ability to proliferate, was measured by clonogenic assay. Comparable intracellular delivery of all sizes of molecules was achieved, indicating that intracellular delivery of common therapeutic drugs may not be limited by molecular size. Maximum PR’s of 80% (at 10 kDa) and 55% (at 10 kDa) were achieved with lipid coated bubbles at 3.3% v/v and protein coated bubbles at 6.7% v/v concentrations. The PI-viability was approximately 80% at 570 kPa in both cases. The maximum PV achieved with both agents was 22%, while inducing a lower overall clonogenic viability with the lipid (39%) compared to the protein (56%) shelled bubbles. This study demonstrates that large macromolecules, up to 2 MDa in size, can be delivered with high efficiency to cells which undergo reversible permeabilisation, maintaining long-term viability in approximately half of the cells.
Keywords:Sonoporation  Therapeutic ultrasound  Permeabilisation  Drug delivery  Microbubble
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号