首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plasmons and their damping in a doped semiconductor superlattice
Authors:P Tripathi  A C Sharma
Institution:(1) Physics Department, Faculty of Science, M S University of Baroda, 390 002 Vadodara, India
Abstract:The complex zeroes of dielectric response function of a doped GaAs superlattice are computed to study the frequencies and damping rates of oscillations in coupled electron-hole plasma. The real part of a complex zero describes the plasma frequency, whereas imaginary part of it yields the damping rate. Strong scattering of charge carriers from random impurity potentials in a doped GaAs superlattice gives rise to a large value of damping rate which causes over-damping of plasma oscillations of coupled electron-hole gas below qc, a critical value of wave vector component (q) along the plane of a layer of electrons (holes). The plasma oscillations which correspond to electrons gas enter into over-damped regime for the case of weak coupling between layers. Whereas, plasma oscillations which belong to hole gas go to over-damped regime of oscillations for both strong as well as weak coupling between layers. The damping rate shows strongq-dependence forq < qc, whereas it weakly depends onq forqq c . The damping rate exhibits a sudden change atq =q c , indicating a transition from non-diffusive regime (where collective excitation can be excited) to diffusive regime (over-damped oscillations).
Keywords:Doping superlattice  critical wave vector plasmons  damping rate
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号