首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering
Authors:Kelly J Gaffney
Institution:Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park California 94025 USA,
Abstract:Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe–S bond dissociation in cytochrome c.

Ultrafast X-ray scattering and spectroscopy captures photophysical and photochemical transformations of 3d transition metal complexes with atomistic detail.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号