首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wavy graphene sheets from electrochemical sewing of corannulene
Authors:Carlo Bruno  Eleonora Ussano  Gianni Barucca  Davide Vanossi  Giovanni Valenti  Edward A Jackson  Andrea Goldoni  Lucio Litti  Simona Fermani  Luca Pasquali  Moreno Meneghetti  Claudio Fontanesi  Lawrence T Scott  Francesco Paolucci  Massimo Marcaccio
Abstract:The presence of non-hexagonal rings in the honeycomb carbon arrangement of graphene produces rippled graphene layers with valuable chemical and physical properties. In principle, a bottom-up approach to introducing distortion from planarity of a graphene sheet can be achieved by careful insertion of curved polyaromatic hydrocarbons during the growth of the lattice. Corannulene, the archetype of such non-planar polyaromatic hydrocarbons, can act as an ideal wrinkling motif in 2D carbon nanostructures. Herein we report an electrochemical bottom-up method to obtain egg-box shaped nanographene structures through a polycondensation of corannulene that produces a new conducting layered material. Characterization of this new polymeric material by electrochemistry, spectroscopy, electron microscopy (SEM and TEM), scanning probe microscopy, and laser desorption-ionization time of flight mass spectrometry provides strong evidence that the anodic polymerization of corannulene, combined with electrochemically induced oxidative cyclodehydrogenations (Scholl reactions), leads to polycorannulene with a wavy graphene-like structure.

A bottom-up synthesis of wavy graphene structures obtained through an anodic polymerization process, combined with an electrochemically triggered oxidative cyclodehydrogenation, of the bowl-shaped polyaromatic hydrocarbon corannulene.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号