首页 | 本学科首页   官方微博 | 高级检索  
     


Multiresolution algorithms for the numerical solution of hyperbolic conservation laws
Authors:Ami Harten
Abstract:Given any scheme in conservation form and an appropriate uniform grid for the numerical solution of the initial value problem for one-dimensional hyperbolic conservation laws we describe a multiresolution algorithm that approximates this numerical solution to a prescribed tolerance in an efficient manner. To do so we consider the grid-averages of the numerical solution for a hierarchy of nested diadic grids in which the given grid is the finest, and introduce an equivalent multiresolution representation. The multiresolution representation of the numerical solution consists of its grid-averages for the coarsest grid and the set of errors in predicting the grid-averages of each level of resolution in this hierarchy from those of the next coarser one. Once the numerical solution is resolved to our satisfaction in a certain locality of some grid, then the prediction errors there are small for this particular grid and all finer ones; this enables us to compress data by setting to zero small components of the representation which fall below a prescribed tolerance. Therefore instead of computing the time-evolution of the numerical solution on the given grid we compute the time-evolution of its compressed multiresolution representation. Algorithmically this amounts to computing the numerical fluxes of the given scheme at the points of the given grid by a hierarchical algorithm which starts with the computation of these numerical fluxes at the points of the coarsest grid and then proceeds through diadic refinements to the given grid. At each step of refinement we add the values of the numerical flux at the center of the coarser cells. The information in the multiresolution representation of the numerical solution is used to determine whether the solution is locally well-resolved. When this is the case we replace the costly exact value of the numerical flux with an accurate enough approximate value which is obtained by an inexpensive interpolation from the coarser grid. The computational efficiency of this multiresolution algorithm is proportional to the rate of data compression (for a prescribed level of tolerance) that can be achieved for the numerical solution of the given scheme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号