首页 | 本学科首页   官方微博 | 高级检索  
     


Potential energy function for cation–peptide interactions: An ab initio study
Authors:Benoî  t Roux,Martin Karplus
Abstract:A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation–water and cation–dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation–peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion–peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ~1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号