首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical analysis of the rate constants for the interstellar reaction N+OH→NO+H
Authors:C J Cobos
Abstract:The title reaction, a key elementary process involved in the chemistry of molecular clouds, has been theoretically studied over the 5–600 K temperature range. Rate constants calculations have been carried out using the full version of the statistical adiabatic channel model in conjunction with a potential energy surface that has been derived from recent ab initio quantum chemical data. By using various switching functions, the influence of the attenuation of the bound-complex bending frequency upon N? OH bond elongation on the temperature dependence of the reaction was investigated. The rate constants exhibit a slightly positive temperature dependence with a calculated rate constant value at 300 K in very good agreement with the measured value. A comparison with the available experimental data between 250 and 515 K suggests that recrossing trajectories might occur with increasing importance as the temperature increases. However, the nonstatistical recrossing effects are expected to be of minor importance at interstellar temperatures such that the rate constants over the 5–200 K temperature range are given by k = 8.41 × 10?12 T+0.30 cm3 molecule?1 s?1. The rate constant calculated at 10 K is consistent with that derived in the astrochemical modeling of the L134N dark cloud. Rate constants for individual quantum states are also presented. © 1995 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号