首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Next-generation quantum theory of atoms in molecules for the photochemical ring-opening reactions of oxirane
Authors:Xin Bin  Alireza Azizi  Tianlv Xu  Steven R Kirk  Michael Filatov  Samantha Jenkins
Institution:1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China;2. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province of MOE, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China

Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea

Abstract:The conical intersections corresponding to the C─O and C─C ring opening were optimized and the reaction paths traversing these intersections were obtained. Investigation of the C─O ring opening revealed that when traversing the lowest energy conical intersection, the reaction path returns to the closed ring geometry. The C─O path traversing the intersection featuring torsion of terminal CH2 group however, led to a ring-opened geometry, an H-shift and the formation of acetaldehyde that can undergo further dissociation. The observation of different reaction paths was explained by the 3-D paths from quantum theory of atoms in molecules (QTAIM) that defined the most preferred direction of electronic motion that precisely tracked the mechanisms of bond breaking and formation throughout the photo-reactions. The size, orientation, and location of these most preferred 3-D paths indicated the extent and direction of motion of atoms, bonds, and the degree of torsion or planarity of a bond indicating a predictive ability.
Keywords:next generation QTAIM  oxirane  photochemistry  ring-opening reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号