首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical scrutinization of nine benzoic acid dimers: Stability and energy decomposition analysis
Authors:Ivana Petrović  Branislav Milovanović  Mihajlo Etinski  Milena Petković
Affiliation:Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
Abstract:Aromatic carboxylic acids are able to form diverse dimers and multimers due to their hydrogen bond donor and acceptor cites, as well as the aromatic rings. In this work, we examine nine benzoic acid dimers stabilized by hydrogen bonding and stacking interactions. Interacting quantum atoms methodology revealed that dominant attractive interactions in all of them, including hydrogen bonded systems, are due to exchange-correlation. Coulomb interactions are significant only in the most stable dimer with a double hydrogen bond, although the corresponding energy term is almost two times lower compared to the nonclassical one. Since interacting quantum atoms approach treats monomers binding by considering electronic energy only, in order to examine dissociation kinetics we performed density functional theory-based molecular dynamics simulations of selected stacked dimers: in 40% of the studied systems at 300 K thermal energy was sufficient to overpower barrier for dissociation within 1 ps, which resulted in the separation of the monomers, whereas 20% of them remained in the stacked position even after 5 ps. These results highlight the importance of noncovalent interactions, particularly weak stacking interactions, on the structure and dynamics of carboxylic acids and their derivatives.
Keywords:benzoic acid dimer  density functional theory-based molecular dynamics  interacting quantum fragments  noncovalent interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号