首页 | 本学科首页   官方微博 | 高级检索  
     


Cr concentration driving the structural,mechanical, and thermodynamic properties of Cr-Al compounds from first-principles calculations
Authors:Yong Pan
Affiliation:School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China
Abstract:Cr-Al binary compounds are regarded as the potential high-temperature structural materials. However, the structure and important properties of Cr-Al compounds are not completely unclear. Here, we report on the influence of Cr concentration on the structural, mechanical, and thermodynamic properties of Cr-Al compounds by using the first-principles calculations. Four novel Cr-Al compounds, Cr3Al8 with monoclinic structure (C2/m), Cr3Al5 with hexagonal structure (P63mc), Cr2Al3 with tetragonal structure (I4/mmm), and Cr3Al with cubic structure (Pm-3 m), are predicted. The calculated elastic modulus of Cr-Al compounds gradually increases with increasing Cr concentration. Compared to other Cr-Al compounds, our predicted Cr3Al with cubic structure exhibits a strong deformation resistance and high hardness due to symmetrical Cr Al bonds. However, the Debye temperature of Cr7Al3 is larger than that of other Cr-Al compounds. The calculated phonon density of state shows that the high-temperature thermodynamic properties of Cr-Al compounds are attributed to the vibration of Al atom and Cr Al bond.
Keywords:Cr-Al compounds  structure  mechanical properties  thermodynamic properties  first-principles calculations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号