首页 | 本学科首页   官方微博 | 高级检索  
     


XAFS investigations of copper(II) complexes with tetradentate Schiff base ligands
Authors:Abhijeet Gaur  B. D. Shrivastava  K. Srivastava  J. Prasad  Sandeep K. Singh
Affiliation:1. School of Studies in Physics, Vikram University, , Ujjain, 452001 India;2. Department of Chemistry, University of Allahabad, , Allahabad, 211002 India
Abstract:X‐ray absorption fine structure spectra have been investigated at the K‐edge of copper in copper(II) salen/salophen complexes: [Cu(salen)] (1), [Cu(salen)CuCl2].H2O (2), [Cu(salophen)] (3) and [Cu(salophen) CuCl2].H2O (4), where salen2? = N,N′‐ethylenebis (salicylidenaminato); salophen2? = o‐phenylenediaminebis(salicylidenaminato). Complexes 1 and 3 are supposed to have one type of copper centers (called (Cu1)) and complexes 2 and 4 two types of copper centers (called (Cu1) and (Cu2)) having different coordination environments and geometries. A theoretical model has been generated using the available crystallographic data of complex 1 and it has been used for analysis of the extended X‐ray absorption fine structure (EXAFS) data of the four complexes to obtain the structural parameters for (Cu1) center. For this center, the obtained Cu–Cu distance (3.2 Å) verifies the binuclear nature of all the complexes. For determining the coordination geometry around (Cu2) center in 2 and 4, a theoretical model has been generated using the crystal structure of a Cu(II) complex, [Cu(C16H12N2O2Cl2)]. This theoretical model has been fitted to the EXAFS data of 2 and 4 to obtain the structural parameters for (Cu2) center. The present analysis shows that (Cu1) center has square pyramidal geometry involving 2N and 3O donor atoms, whereas (Cu2) center has distorted tetrahedral geometry with 2O and 2Cl donor atoms. The values of the chemical shifts and presence of typical Cu(II) X‐ray absorption near‐edge spectroscopy features suggest that copper is in the +2 oxidation state in all these complexes. The intensity of ls → 3d pre‐edge feature has been used to investigate the geometry and binuclear nature of the complexes. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号