首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-consistent calculation of the optical potential and ground-state properties of nuclear matter
Authors:Q Ho-Kim  FC Khanna
Institution:Department of Physics, Laval University, Quebec, Canada G1K 7P4;Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1JO
Abstract:On the basis of the Green-function formalism, we performed a self-consistent calculation of the self-energy ∑(k, ω) of a particle interacting with the infinite nuclear medium. The function ∑(k, ω) was mapped out in the energy-momentum plane, and the single-particle energy ω(k), momentum distribution ?(k) and the “on-shell” part of the self-energy, ∑(k, ω(k)), were defined, from which all physical properties followed. In particular we investigated the ground-state properties of nuclear matter in two Λ-approximations of the T-matrix. In one, the intermediate two-particle propagator, Λ00, represented free-particle propagation; in the other, called Λ11, intermediate states included both interacting particles and holes. Pauli principle effects were included in both approximations. The second approximation was expected to be conserving because it included a large part of the rearrangement effects which, we found, contributed ~6 MeV per particle to the average energy and ~28 MeV to the singleparticle energy at zero momentum. The Hugenholtz-van Hove theorem was nearly satisfied, with only 1 MeV separating the chemical potential from the average energy. We also studied, in the Λ00-approximation, the optical potential for the scattering of a particle by a large nucleus; it was directly related to the “on-shell” part of the self-energy. It was found that, below 100 MeV, the real part varied as (?90 + 0.584E) MeV], and the imaginary part as (2.4 + 0.009 E) MeV].
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号