首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Control of underactuated mechanical systems with servo-constraints
Authors:Wojciech Blajer  Krzysztof Kołodziejczyk
Institution:(1) Institute of Applied Mechanics, Technical University of Radom, ul. Krasickiego 54, 26-600 Radom, Poland
Abstract:This paper deals with a class of controlled mechanical systems in which the number of control inputs, equal to the number of desired system outputs, is smaller than the number of degrees of freedom. The related inverse dynamics control problem, i.e., the determination of control input strategy that force the underactuated system to complete the partly specified motion, is a challenging task. In the present formulation, the desired system outputs, expressed in terms of the system states, are treated as servo-constraints on the system, and the problem is viewed from the constrained motion perspective. Mixed orthogonal-tangent realization of the constraints by the available control reactions is stated, and a specialized methodology for solving the “singular” control problem is developed. The governing equations are manipulated to index three differential-algebraic equations, and a simple numerical code for solving the equations is proposed. The feedforward control law obtained as a solution to these equations can then be enhanced by a closed-loop control strategy with feedback of the actual servo-constraint violations to provide stable tracking of the reference motion in the presence of perturbations and modeling uncertainties. An overhead trolley crane executing a load-prescribed motion serves as an illustration. Some results of numerical simulations are reported.
Keywords:Inverse dynamics control  Underactuated systems  Servo-constraints  Crane control
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号