首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of hydrogen bonding on oligoleucine structure in water: A molecular dynamics simulation study
Authors:Ben Hanson
Institution:Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Dr., Rm. 304, Salt Lake City, UT 84112, USA
Abstract:Molecular dynamics simulations were conducted in order to improve our understanding of the forces that determine polyleucine chains conformations and govern polyleucine self-assembly in aqueous solutions. Simulations of 10 repeat unit oligoleucine in aqueous solution were performed using the optimized potential for liquid simulations (OPLS) - all atom force field using the canonical ensemble for a minimum of 1.3 ns. These simulations provided information on conformations, chain collapse and intermolecular aggregation. Simulations indicate that single isotactic oligoleucine chains in dilute solution assume tightly packed, regular hairpin conformations while atactic oligoleucine assumes a much less regular and less compact structure. The regular, compact collapsed isotactic chain exhibited a greater degree of intramolecular hydrogen bonding and an increased level of hydrophobic t-butyl functional group aggregation compared to the atactic chain. This occurs at the expense of reduced leucine-water hydrogen bonding.
Keywords:Polyleucine  Tacticity  Potential of mean force  Hydrogen bonding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号