首页 | 本学科首页   官方微博 | 高级检索  
     


Beta-alanine-based dendritic beta-peptides: dendrimers possessing unusually strong binding ability towards protic solvents and their self-assembly into nanoscale aggregates through hydrogen-bond interactions
Authors:Mong T K  Niu A  Chow H F  Wu C  Li L  Chen R
Affiliation:Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, PR China.
Abstract:A series of poly(beta-alanine) dendrimers 1-4 with Boc-carbamate as the surface functionality, beta-alanine as the dendritic branch, 3,5-diaminobenzoic acid as the branching agent, and 1,2diaminoethane as the interior core has been synthesized by a solution-phase peptide-coupling method. The structural identities and purities of the products have been fully characterized by spectroscopic and chromatographic methods. 1H NMR studies on the dendrimers indicated that the Boc-carbamate surface groups exist as a mixture of syn and anti rotamers in solution, and that the dendrimers adopt an open structure in polar solvents; this allows the free interaction of the interior core functionality with solvent molecules. Due to the cooperative effect of a large number of carbamate and amide groups, the dendrimers exhibit an unusually strong binding ability towards protic solvents and behave as H-bond sponges. As a result, the H/D exchange rates of the N-H protons are significantly enhanced in such dendritic structures, as compared to those of nondendritic carbamates and amides. These dendritic peptide dendrimers also exhibit a strong tendency to form nanoscopic aggregates in nonpolar or polar aprotic solvents through intermolecular H-bond interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号