首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination and prediction of transfer ratios for anions in capillary zone electrophoresis with indirect UV detection
Authors:Philip Doble  Per Andersson  Paul R Haddad  
Institution:

aDepartment of Chemistry, University of Tasmania, GPO Box 252C, Hobart, Tasmania 7001, Australia

Abstract:Transfer ratios (i.e. the number of moles of the UV-absorbing probe anion displaced by one mole of analyte anion) were determined for the separation of inorganic and organic anions by capillary zone electrophoresis using indirect UV absorbance detection. When the electrolyte was buffered and contained only the probe anion and a single counter-cation, transfer ratios calculated from Kohlrausch theory were found to agree well with values obtained experimentally from accurately determined mobility data. However, these electrolyte systems gave long analysis times and were therefore considered impractical. More useful electrolytes were obtained by the addition of surfactants to suppress or reverse the electroosmotic flow but the co-anion introduced with the surfactant can reduce the value of the measured transfer ratio and hence adversely affect sensitivity. This problem was overcome by the use of a surfactant in the hydroxide from such as cetyltrimethylammonium hydroxide combined with a suitable buffering counter-cation such as protonated 1,3-bistris(hydroxymethyl)-methylamino]-propane or tris(hydroxymethyl)aminoethane. Four buffered electrolytes consisting of chromate, benzoate, phthalate, or trimellitate as probes and a suitable surfactant were used to determine transfer ratios. These systems were shown to give transfer ratios that were close to those calculated from Kohlrausch theory, thereby enabling prediction of experimental conditions giving maximum transfer ratios.
Keywords:Transfer ratio  Indirect detection  Detection    Electrophoresis  Anions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号