首页 | 本学科首页   官方微博 | 高级检索  
     


Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization
Authors:Hikita Masaya  Tanaka Keiji  Nakamura Tetsuya  Kajiyama Tisato  Takahara Atsushi
Affiliation:Japan Chemical Innovation Institute, Fuzanbou Building, 1-3-5 Kanda Jinbouchou, Chiyoda-ku, Tokyo 101-0051, Japan.
Abstract:Well-defined poly(styrene-block-2-perfluorooctyl ethyl acrylate) [P(St-b-PFA)] copolymers with various chemical compositions were synthesized by atom transfer radical polymerization. Films of P(St-b-PFA) were structurally characterized, from bulk to surface, on the basis of transmittance electron microscopic observation and small-angle X-ray scattering, X-ray photoelectron spectroscopic, and contact angle measurements. For a comparison, poly(styrene-random-2-perfluorooctyl ethyl acrylate) [P(St-ran-PFA)] copolymers were also synthesized by conventional free radical polymerization. While P(St-b-PFA) with the 2-perfluorooctyl ethyl acrylate (PFA) content higher than 18.7 mol % formed a typical phase-separated cylinder structure, P(St-b-PFA) with a lower PFA content and P(St-ran-PFA) were in a miscible state. Since the perfluoroalkyl groups possess extremely low surface energy, they were preferentially segregated at the film surface, resulting in the formation of the PFA surface layer. This was the case for all P(St-b-PFA) films examined, although the aggregation state at the surface was strongly dependent on the PFA content. In the case of the P(St-b-PFA) with the PFA content higher than 18.7 mol %, both advancing and receding contact angles for water were 120 degrees and even larger with almost no hysteresis. In addition, extremely excellent oil-repellent surface properties such as advancing and receding contact angles for dodecane of 76 degrees and 75 degrees were also observed. However, these intriguing liquid-repellent properties were not observed for the films of miscible P(St-b-PFA) and P(St-ran-PFA). Therefore, it can be concluded that the internal structure beneath the surface as well as the surface itself should be deeply considered to design excellent and stable liquid-repellent materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号