首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solvent-bar microextraction—Using a silica monolith as the extractant phase holder
Authors:Li Xu  Hian Kee Lee
Institution:1. College of Pharmacy, Tongji Medical Center, Huazhong University of Science and Technology, Wuhan 430030, China;2. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;3. Tropical Marine Science Institute, National University of Singapore, S2S, 18 Kent Ridge Road, Singapore 119227, Singapore
Abstract:In this paper, a novel liquid-phase microextraction (LPME) approach, based on solvent-bar microextraction (SBME), was developed in which a silica monolith was used as the extractant solvent holder. Owing to the porous nature of the monolith, the extractant solvent could be easily held in the material; when the monolith containing the extractant solvent was exposed to the sample solution, analytes could directly diffuse from the sample solution into the extractant solvent. Polycyclic aromatic hydrocarbons (PAHs) were used as model analytes to evaluate the procedure. Through the investigation of the effect of agitation speed, extraction time, length of the monolith (that determined the volume of organic extractant solvent) and salt concentration on extraction efficiency, the following optimal extraction conditions were obtained: stirring at 1000 rpm for 30 min without salt addition using a 4-mm silica monolith. The limits of detection ranged from 3.9 pg/mL to 28.8 pg/mL, with relative standard deviations of between 8.16% and 10.5% on the same silica monolith. The linearity was 0.05–200 ng/mL for fluoranthene and pyrene, and 0.5–200 ng/mL for chrysene and benzob]fluoranthene, with acceptable correlation coefficient. When this method was applied for the spiked real river sample, the relative recoveries ranged from 87.1% to 100.7% for the tested PAHs. This method was also compared to polymeric hollow fiber-based SBME and hollow fiber-protected LPME and found to provide better results. Additionally, compared with the polymeric hollow fiber, the silica monolith possesses good resistance to extreme conditions, such as high temperature and pH, and is more compatible with various organic solvents. This is the first report of an application of a monolithic material for LPME, and as a solvent holder for SBME. It extends the scope of applications of such materials, to analytical chemistry, specifically to sample preparation.
Keywords:Solvent bar microextraction  Silica monolith  Liquid-phase microextraction  Polycyclic aromatic hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号