首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NUMERICAL CALCULATION OF 2D,UNSTEADY FLOW IN CENTRIFUGAL PUMPS: IMPELLER AND VOLUTE INTERACTION
Authors:D CROBA  J L KUENY
Abstract:A numerical model is developed for calculating the two-dimensional, unsteady, incompressible and turbulent flow within the rotating impeller and stationary volute of an industrial centrifugal pump. The objective is the investigation and comprehension of the instantaneous behaviour of centrifugal pumps, aiming at the reduction of vibrations, radial forces and hydraulic noise. The computation is performed within a blade-to-blade streamtube for the impeller and a tube normal to the axis of rotation for the volute. The equations to be solved are the unsteady Reynolds-averaged Navier–Stokes equations along with the continuity equation and the unsteady κ–ϵ equations for turbulence modelling. The finite volume method is applied for space discretization and an implicit scheme for time discretization. A multidomain overlapping grid technique is used for matching together the relative flow field calculated within the rotating impeller and the absolute one calculated within the stationary volute. In this way the impeller and volute interaction is directly taken into account. The numerical model is validated for a centrifugal pump of N q=32 under design flow conditions. Comparisons between calculation and measurements show fairly good agreement.
Keywords:centrifugal pump  multidomain calculation  unsteady flow  finite volume method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号