首页 | 本学科首页   官方微博 | 高级检索  
     


NUMERICAL MODELLING AND PARTICLE IMAGE VELOCIMETRY MEASUREMENT OF THE LAMINAR FLOW FIELD INDUCED BY AN ENCLOSED ROTATING DISC
Authors:M. ZHOU  C. P. GARNER  M. REEVES
Abstract:The fluid flow field within an enclosed cylindrical chamber with a rotating flat disc was calculated using a finite volume computational fluid dynamics (CFD) model and compared with particle image velocimetry (PIV) measurements. Two particular laminar cases near the Transitional flow regime were investigated: Reynolds number Re=2.5×1 4, chamber aspect ratio G (h/Rd)=0.2 and Re=4.2×104, G (h/Rd)=0.217. This enabled direct comparison with the numerical and experimental results reported by other researchers. The computational details and some major factors that affect the computed accuracy and convergence speed are also discussed in detail. PIV results containing some 4300 velocity vector points in each of seven planes for each case were obtained from the flow field parallel to the rotating disc. It was found that PIV results could be obtained in planes within the boundary layers as well as the core flow by careful use of a thin laser illumination sheet and correct choice of laser pulse separation. There was close agreement between numerical results, the present PIV measurements and other reported experimental and numerical results.
Keywords:laminar flow  numerical modelling  particle image velocimetry measurement  rotating disc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号