首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Semiconductor-metal transition in selenium under shock compression
Authors:S D Gilev
Institution:(1) Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent’eva 15, Novosibirsk, 630090, Russia
Abstract:Phase transitions in selenium are studied by time-resolved measurements of the electrical conductivity under shock compression at a pressure of up to 32 GPa. The pressure dependence of the electrical conductivity (σ(P)) has two portions: a sharp increase at P < 21 GPa and a plateau at P > 21 GPa. The experimental data and the temperature estimates indicate that, at P < 21 GPa, selenium is in the semiconductor state. The energy gap of semiconducting selenium decreases substantially under compression. At P > 21 GPa, the electrical conductivity saturates at ~104 Ω?1 cm?1. Such a high value of the electrical conductivity shows the effective semiconductor-metal transition taking place in shock-compressed selenium. Experiments with samples having different initial densities demonstrate the effect of temperature on the phase transition. For example, powdered selenium experiences the transition at a lower shock pressure than solid selenium. Comparison of the temperature estimates with the phase diagram of selenium shows that powdered selenium metallizes in a shock wave as a result of melting. The most plausible mechanism behind the shock-induced semiconductor-metal transition in solid selenium is melting or the transition in the solid phase. Under shock compression, the metallic phase arises without a noticeable time delay. After relief, the metallic phase persists for a time, delaying the reverse transition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号