首页 | 本学科首页   官方微博 | 高级检索  
     


Waldhausen's theory of k-fold end structures: a survey
Authors:M.E. Petty
Affiliation:Department of Mathematics, Texas Wesleyan College, Forth Worth, TX 76105, USA
Abstract:Let R+ be the space of nonnegative real numbers. F. Waldhausen defines a k-fold end structure on a space X as an ordered k-tuple of continuous maps xf:XR+, 1 ? j ? k, yielding a proper map x:X → (R+)k. The pairs (X,x) are made into the category Ek of spaces with k-fold end structure. Attachments and expansions in Ek are defined by induction on k, where elementary attachments and expansions in E0 have their usual meaning. The category Ek/Z consists of objects (X, i) where i: ZX is an inclusion in Ek with an attachment of i(Z) to X, and the category Ek6Z consists of pairs (X,i) of Ek/Z that admit retractions XZ. An infinite complex over Z is a sequence X = {X1 ? X2 ? … ? Xn …} of inclusions in Ek6Z. The abelian grou p S0(Z) is then defined as the set of equivalence classes of infinite complexes dominated by finite ones, where the equivalence relation is generated by homotopy equivalence and finite attachment; and the abelian group S1(Z) is defined as the set of equivalence classes of X1, where XEk/Z deformation retracts to Z. The group operations are gluing over Z. This paper presents the Waldhausen theory with some additions and in particular the proof of Waldhausen's proposition that there exists a natural exact sequence 0 → S1(Z × R)→πS0(Z) by utilizing methods of L.C. Siebenmann. Waldhausen developed this theory while seeking to prove the topological invariance of Whitehead torsion; however, the end structures also have application in studying the splitting of a noncompact manifold as a product with R[1].
Keywords:Primary 54B30  Secondary 55S35, 57Q10
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号