首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The relationship between nanosilica dispersion degree and the tensile properties of polyurethane nanocomposites
Authors:Leonel M Chiacchiarelli  Ivan Puri  Debora Puglia  José M Kenny  Luigi Torre
Institution:1. Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100, Terni, Italy
2. Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
Abstract:The tensile properties and structure of silica-based polyurethane (PU) nanocomposites were parametrically studied as a function of silica type and weight concentration, polyol OH number, and mixing methods. The variation of the silica functionalization groups (from silanols to silazanes) had a relevant effect on dispersion. An elevated interparticle distance of the silica agglomerates improved substantially the tensile strength (from 44.3 to 82.8 MPa) and strain to failure (from 3.0 to 7.95) while maintaining elastic modulus (from 2.08 to 2.31 GPa) with respect to the neat PU matrix. Polyol’s with different OH numbers have shown to dramatically modify the silica dispersion degree by the modification of the stability of the colloidal dispersion. An increase of its value deteriorated dispersion and the tensile properties of the nanocomposites. The effect of three dispersion methods (ultrasonic dispersion, high shear mixing, and tip sonication) has shown to have a relative effect on the reduction of agglomerate size and the interparticle distance. High power sonication methods were more effective in reducing agglomerate size in contrast to shear methods. Classical theories of colloidal dispersion (Derjaguin, Landau, Verwey, and Overbeek) have been able to explain the correlation between the silica aggregation state and the final tensile properties of the nanocomposite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号