首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Algebraic vortex liquid in spin-1/2 triangular antiferromagnets: scenario for Cs2CuCl4
Authors:Alicea Jason  Motrunich Olexei I  Fisher Matthew P A
Institution:Physics Department, University of California, Santa Barbara, California 93106, USA.
Abstract:Motivated by inelastic neutron scattering data on Cs2CuCl4, we explore spin-1/2 triangular lattice antiferromagnets with both spatial and easy-plane exchange anisotropies, the latter due to an observed Dzyaloshinskii-Moriya interaction. Exploiting a duality mapping followed by a fermionization of the dual vortex degrees of freedom, we find a novel critical spin-liquid phase described in terms of Dirac fermions with an emergent global SU(4) symmetry minimally coupled to a noncompact U(1) gauge field. This "algebraic vortex liquid" supports gapless spin excitations and universal power-law correlations in the dynamical spin structure factor which are consistent with those observed in Cs2CuCl4. We suggest future neutron scattering experiments that should help distinguish between the algebraic vortex liquid and other spin liquids and quantum critical points previously proposed in the context of Cs2CuCl4.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号