首页 | 本学科首页   官方微博 | 高级检索  
     


Phase Field Approach to Multiphase Flow Modeling
Authors:Andrea G. Lamorgese  Dafne Molin  Roberto Mauri
Affiliation:1. Department of Chemical Engineering, The City College of CUNY, 10031, New York, U.S.A.
2. Department of Mechanical Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
3. Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Via Diotisalvi 2, 56126, Pisa, Italy
Abstract:We review the phase field (otherwise called diffuse interface) model for fluid flows, where all quantities, such as density and composition, are assumed to vary continuously in space. This approach is the natural extension of van der Waals?? theory of critical phenomena both for one-component, two-phase fluids and for partially miscible liquid mixtures. The equations of motion are derived, assuming a simple expression for the pairwise interaction potential. In particular, we see that a non-equilibrium, reversible body force appears in the Navier-Stokes equation, that is proportional to the gradient of the generalized chemical potential. This, so called Korteweg, force is responsible for the convection that is observed in otherwise quiescent systems during phase change. In addition, in binary mixtures, the diffusive flux is modeled using a Cahn-Hilliard constitutive law with a composition-dependent diffusivity, showing that it reduces to Fick??s law in the dilute limit case. Finally, the results of several numerical simulations are described, modeling, in particular, a) mixing, b) spinodal decomposition, c) nucleation, d) enhanced heat transport, e) liquid-vapor phase separation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号