首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlations Between Amino Acids at Different Sites in Local Sequences of Protein Fragments with Given Structural Patterns
Authors:Wen Lu  Hai-yan Liu
Institution:{{each article.affiliations aff i}} {{if aff.addressEn && aff.addressEn != ""}} {{if aff.label && aff.label != "" && article.affiliations.length != 1}}{{@ aff.label}}.{{/if}}{{@ aff.addressEn}}{{/if}} {{/each}}
Abstract:Ample evidence suggests that the local structures of peptide fragments in native proteins are to some extent encoded by their local sequences. Detecting such local correlations is important but it is still an open question what would be the most appropriate method. This is partly because conventional sequence analyses treat amino acid preferences at each site of a protein sequence independently, while it is often the inter-site interactions that bring about local sequence-structure correlations. Here a new scheme is introduced to capture the correlation between amino acid preferences at different sites for different local structure types. A library of nine-residue fragments is constructed, and the fragments are divided into clusters based on their local structures. For each local structure cluster or type, chi-square tests are used to identify correlated preferences of amino acid combinations at pairs of sites. A score function is constructed including both the single site amino acid preferences and the dual-site amino acid combination preferences, which can be used to identify whether a sequence fragment would have a strong tendency to form a particular local structure in native proteins. The results show that, given a local structure pattern, dual-site amino acid combinations contain different information from single site amino acid preferences. Representative examples show that many of the statistically identified correlations agree with previously-proposed heuristic rules about local sequence-structure correlations, or are consistent with physical-chemical interactions required to stabilize particular local structures. Results also show that such dual-site correlations in the score function significantly improves the Z-score matching a sequence fragment to its native local structure relative to nonnative local structures, and certain local structure types are highly predictable from the local sequence alone if inter-site correlations are considered.
Keywords:Protein  Local structure pattern  Sequence-structure correlation  Hydrogen bonding  
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号