首页 | 本学科首页   官方微博 | 高级检索  
     


Time-dependent Quantum Wave Packet Study of F+HCl and F+DCl Reactions
Authors:Zhi-gang Sun  Soo Y. Lee  Dong-hui Zhang
Affiliation:{{each article.affiliations aff i}} {{if aff.addressEn && aff.addressEn != ""}} {{if aff.label && aff.label != "" && article.affiliations.length != 1}}{{@ aff.label}}.{{/if}}{{@ aff.addressEn}}{{/if}} {{/each}}
Abstract:The F+HCl and F+DCl reactions are studied by the time-dependent quantum wave packet method, using the most recent potential energy surface reported by Deskevich et al.. Total reaction probabilities for a number of initial ro-vibrational states of HCl and DCl diatomic moiety are presented in the case of total angular momentum J=0. It is found that for both reactions the initial rotational excitation of the diatomic moiety enhances greatly the reaction probabilities but this e?ect is more signiˉcant for F+HCl system. This is mainly due to larger rotational constant of the HCl reagent. The initial vibrational excitation of the diatomic moiety has little e?ect on the reactivity for both systems except shifting down the collision energy threshold. The results indicate that the reaction coordinates for these two systems are e?ectively along rotational freedom degree. More quantum phenomena, such as tunneling and resonance, are observed in F+HCl reaction than F+DCl reaction, and for the initial states studied, the reactivity of the later is lower. Di?erent skewing angles of these two systems account for these isotopic di?erences.
Keywords:Time-dependent wave packet   Reactive scattering   F+HCl  
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号