首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-Linear Transformations and Their Applications in Many-Body Physics
Authors:Nazakat Ullah
Abstract:The transformations of the type which convert an exponential into a Gaussian and vice-versa and their applications in various areas of many-body physics are discussed. A new and general method of obtaining such transformations is given using the method of moments. It is compared with other methods which could be employed to obtain such transformations. In atomic physics, we have shown how such transformations can be used to obtain electron interaction energy for the ground state of Helium and Wigner transform for the ground state of H atom. It is shown how to bring angular momentum operators to linear form so that one can use the usual property of rotation operator to calculate their matrix elements. A new way of calculating the approximate eigenvalues of a Hamiltonian is given which combines the variational principles with the principle of maximum entropy. The anharmonic oscillator Hamiltonian is used to illustrate this new method. An interesting aspect of these transformations is that one could combine them with other transformations like Grassmann integration to calculate quantities of physical interest in closed form. A general matrix element of the harmonic oscillator is given which can be used to calculate usual quantities like the trace and density matrix. Some future applications are also discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号