首页 | 本学科首页   官方微博 | 高级检索  
     


Anion dependent redox changes in iron bis-terdentate nitroxide {NNO} chelates
Authors:Gass Ian A  Gartshore Christopher J  Lupton David W  Moubaraki Boujemaa  Nafady Ayman  Bond Alan M  Boas John F  Cashion John D  Milsmann Carsten  Wieghardt Karl  Murray Keith S
Affiliation:School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Abstract:The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(?)), produces the mononuclear transition metal complex [Fe(II)(L(?))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mo?ssbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mo?ssbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(?) coordinate equatorially while the oxygen containing the radical from L(?) coordinates axially forming a linear O(?)··Fe(II)··O(?) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号