首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary
Authors:Trippa Giuliana  Trine Stéphanie  Ventikos Yiannis  Coussios Constantin-C
Institution:Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, United Kingdom. giulianatrippa@gmail.com
Abstract:An implementation of a quarter-wavelength standing wave separator that exploits an air drum to achieve the pressure node is presented and characterized experimentally. The air drum configuration was implemented and tested in a set-up with a 40 kHz transducer immersed in a water tank with the quarter-wavelength gap being approximately 9 mm wide. Injection of suspensions of 5 μm and 45 μm diameter polystyrene particles at flow rates of 30 ml/h and 60 ml/h was studied and particle deflection towards the pressure node at the air drum surface was observed for a range of acoustic pressures. Computational results on single particle trajectories show good agreement with the experimental findings for the 45 μm particles, but not for the 5 μm particles. These were considered to behave as aggregates of higher effective dimension, due to their much higher number density relative to the 45 μm particles in the suspensions used. The set-up developed in this study includes a robust method for achieving a pressure node in a quarter-wavelength system and can represent the first step toward the development of an alternative separator configuration in respect to small channel MHz range operated systems for the manipulation of particles streams.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号