首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanoporous silicon flakes as anode active material for lithium-ion batteries
Institution:1. Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Cameroon;2. Department of Physics, Higher Teachers'' Training College, The University of Maroua, PO BOX 55 Maroua, Cameroon;1. SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People''s Republic of China;2. Center for Advanced Carbon Materials, Southeast University and Jiangnan Graphene Research Institute, Changzhou 213100, People''s Republic of China;3. Center for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, People''s Republic of China
Abstract:Nanoporous-silicon (np-Si) flakes were prepared using a combination of an electrochemical etching process and an ultra-sonication treatment and the electrochemical properties were studied as an anode active material for rechargeable lithium-ion batteries (LIBs). This fabrication method is a simple, reproducible, and cost effective way to make high-performance Si-based anode active materials in LIBs. The anode based on np-Si flakes exhibited a higher performances (lower capacity fade rate, stability and excellent rate capability at high C-rate) than the anode based on Si nanowires. The excellent performance of the np-Si flake anode was attributed to the hollowness (nanoporous structure) of the anode active material, which allowed it to accommodate a large volume change during cycling.
Keywords:Nanoporous silicon flake  Porous silicon  Anode active material  Lithium-ion battery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号