首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate
Institution:1. Department of Physics, Covenant University Canaan land, P.M.B 1023, Ota, Nigeria;2. Department of Mechanical Engineering Science, University of Johannesburg, South Africa
Abstract:The present work reports on an efficient and simple one pot synthetic approach for aluminium nanoflakes and nanoparticles based on the intensification using ultrasound and provides a comparison with the conventional approach to establish the cutting edge process benefits. In situ passivation of aluminium particles with oleic acid was used as the method of synthesis in both the conventional and ultrasound assisted approaches. The aluminium nanoflakes prepared using the ultrasound assisted approach were subsequently dispersed in di-octyl adipate (DOA) and it was demonstrated that a stable dispersion of aluminium nanoflakes into di-octyl adipate (DOA) is achieved. The morphology of the synthesized material was established using the transmission electron microscopy (TEM) analysis and energy dispersive X-ray analysis (EDX) and the obtained results confirmed the metal state and nano size range of the obtained aluminium nanoflakes and particles. The stability of the aluminium nanoflakes obtained using ultrasound assisted approach and nanoparticles using conventional approach were characterized using the zeta potential analysis and the obtained values were in the range of ?50 to +50 mV and ?100 to +30 mV respectively. The obtained samples from both the approaches were also characterized using X-ray diffraction (XRD) and particle size analysis (PSA) to establish the crystallite size and particle distribution. It was observed that the particle size of the aluminium nanoflakes obtained using ultrasound assisted approach was in the range of 7–11 nm whereas the size of aluminium nanoparticles obtained using conventional approach was much higher in the range of 1000–3000 nm. Overall it was demonstrated that the aluminium nanoflakes obtained using the ultrasound assisted approach showed excellent morphological characteristics and dispersion stability in DOA showing promise for the high energy applications.
Keywords:Ultrasound  Oleic acid  Aluminium nanoparticles  Dispersion  Di-octyl adipate  Process intensification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号