首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical study for the reaction of vinyl cyanide C2H3CN(X1A') with the ground state carbon atom C(3P) in cold molecular clouds
Authors:Su Hsiu-Fen  Kaiser R I  Chang A H H
Institution:Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan, Republic of China.
Abstract:The reaction of the ground state atomic carbon, C(3P), with simple unsaturated nitrile, C2H3CN(X1A' (vinyl cyanide), is investigated theoretically to explore the probable routes for the formation of carbon-nitrogen-bearing species in extraterrestrial environments particularly of ultralow temperature. Five collision complexes without entrance barrier as a result of the carbon atom addition to the pi systems of C2H3CN are characterized. The B3YLP/6-311G(d,p) level of theory is utilized in obtaining the optimized geometries, harmonic frequencies, and energies of the intermediates, transition states, and products along the isomerization and dissociation pathways of each collision complex. Subsequently, with the facilitation of computed RRKM rate constants at collision energy of 0-10 kcal/mol, the most probable paths for each collision complexes are determined, of which the CCSD(T)/6-311G(d,p) energies are calculated. The major products predicted are exclusively due to the hydrogen atom dissociations, while the products of H2, CN, and CH2 decompositions are found negligible. Among many possible H-elimination products, cyano propargyl (p4) and 3-cyano propargyl (p5) are the most probable, in which p5 can be formed via two intermediates, cyano allene (i8) and cyano vinylmethylene (i6), while p4 is yielded from i8. The study suggests this class of reaction is an important route to the synthesis of unsaturated nitriles at the temperature as low as 10 K, and the results are valuable for future chemical models of interstellar clouds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号