首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uncovering selective and active Ga surface sites in gallia–alumina mixed-oxide propane dehydrogenation catalysts by dynamic nuclear polarization surface enhanced NMR spectroscopy
Authors:Pedro Castro-Fernndez  Monu Kaushik  Zhuoran Wang  Deni Mance  Evgenia Kountoupi  Elena Willinger  Paula M Abdala  Christophe Copret  Anne Lesage  Alexey Fedorov  Christoph R Müller
Institution:Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich Switzerland.; High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1, UMR 5082, F-69100 Villeurbanne France.; Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich Switzerland
Abstract:Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance.

Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号