首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computations of a laminar backward‐facing step flow at Re=800 with a spectral domain decomposition method
Authors:Jayant Keskar  DA Lyn
Abstract:The two‐dimensional laminar incompressible flow over a backward‐facing step is computed using a spectral domain decomposition approach. A minimum number of subdomains (two) is used; high resolution being achieved by increasing the order of the basis Chebyshev polynomial. Results for the case of a Reynolds number of 800 are presented and compared in detail with benchmark computations. Stable accurate steady flow solutions were obtained using substantially fewer nodes than in previously reported simulations. In addition, the problem of outflow boundary conditions was examined on a shortened domain. Because of their more global nature, spectral methods are particularly sensitive to imposed boundary conditions, which may be exploited in examining the effect of artificial (non‐physical) outflow boundary conditions. Two widely used set of conditions were tested: pseudo stress‐free conditions and zero normal gradient conditions. Contrary to previous results using the finite volume approach, the latter is found to yield a qualitatively erroneous yet stable flow‐field. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:spectral domain decomposition method  laminar incompressible backward‐facing step flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号