首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computations of strongly swirling flows with second‐moment closures
Authors:JC Chen  CA Lin
Abstract:The present study is concerned with simulating turbulent, strongly swirling flows by eddy viscosity model and Reynolds stress transport model variants adopting linear and quadratic form of the pressure–strain models. Flows with different inlet swirl numbers, 2.25 and 0.85, were investigated. Detailed comparisons of the predicted results and measurements were presented to assess the merits of model variants. For the swirl number 2.25 case, due to the inherent capability of the Reynolds stress models to capture the strong swirl and turbulence interaction, both the linear and quadratic form of the pressure–strain models predict the flow adequately. In strong contrast, the k–? model predicts an excessively diffusive flow fields. For the swirl number 0.85 case, both the k–? and Reynolds stress model with linear pressure–strain process, show an excessive diffusive transport of the flow fields. The quadratic pressure–strain model, on the other hand, mimics the correct flow development with the recirculating region being correctly predicted. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:flow computations  swirl  turbulence modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号