首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of fluid–structure interaction by an arbitrary Lagrangian–Eulerian finite element formulation
Authors:PA Mendes  FA Branco
Abstract:In this paper, the interaction fluid–rigid body is analysed by a finite element procedure that incorporates the arbitrary Lagrangian–Eulerian (ALE) method into a well‐known two‐step projection scheme. The flow is assumed to be two‐dimensional, incompressible and viscous, with no turbulence models being included. The flow past a circular cylinder at ℛℯ=200 is first analysed, for fixed and oscillating conditions. The dependence of lock‐in upon the shift between the mechanical and the Strouhal frequencies, for a given amplitude of forced vibration, is illustrated. The aerodynamic forces and the wake geometry are compared for locked‐in conditions with different driving frequencies. The behaviour of a rectangular cylinder (B/D=4) at ℛℯ=500 (based on height D) is also analysed. The flutter derivatives associated with aerodynamic damping (H1* and A2* in Scanlan's notation) are evaluated by the free oscillation method for several values of reduced flow speed above the Strouhal one (namely for 3≤U*≤8). Torsional flutter was attained at U*≥5, with all the other situations showing stable characteristics. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:incompressible flow  ALE method  vortex shedding  lock‐in  flutter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号