首页 | 本学科首页   官方微博 | 高级检索  
     


Potential polymorphs of aspirin
Authors:R. S. Payne  R. C. Rowe  R. J. Roberts  M. H. Charlton  R. Docherty
Abstract:Aspirin is only found experimentally in one crystal structure. In this article, the method of Karfunkel and Gdanitz is used to predict potential polymorphs of aspirin. The known structure, containing a nonplanar conformer is found, along with a number of other low energy structures, many of which are based on a planar conformer. Semiempirical and ab initio calculations show that the planar conformer is less stable than the experimentally known one. Force field calculations suggest that the planar conformer is more stable. The lattice energy of the experimentally known crystal structure is 1.4 kcal/mol lower than any of the potential crystal structures, even though there are a number of structures with lower total (lattice+intramolecular) energies. Conformational maps indicate that another stable conformation occurs within a few kilocalories per mole of the known structure. Polymorphs are predicted for this conformer, but it is found to pack poorly. It is proposed that routes to producing polymorphs of aspirin might be found if consideration is given to promoting the stability of the planar conformer with appropriate solvents or additives. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 262–273, 1999
Keywords:polymorphism  polymorph prediction  aspirin  conformational flexibility  crystallization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号