首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of ground- and excited-state properties of [Ru(bz)2]2+ and bis(η6-benzene)ruthenium(II) p-toluenesulfonate using the density functional theory
Authors:F. Gilardoni  J. Weber  A. Hauser  C. Daul
Abstract:The ground- and excited-state properties of both [Ru(bz)2]2+ and crystalline bis(η6-benzene)ruthenium(II) p-toluenesulfonate are investigated using the density functional theory. A symmetry-based technique is employed to calculate the energies of the multiplet structure splitting of the singly excited triplet states. For the crystalline system, a Buckingham potential is introduced to describe the intermolecular interactions between the [Ru(bz)2]2+ system and its first shell of neighbor molecules. The overall agreement between experimental and calculated ground- and excited-state properties is good, as far as the absolute transition energies, the Stokes shift, and the geometry of the excited states are concerned. The calculated d-d excitation energies of the isolated cluster are typically 1000–2000 cm−1 too low. An energy lowering is obtained in a1ge1g(3E1g) excited state when the geometry of [Ru(bz)2]2+ is bent along the e1u Renner–Teller active coordinate. It vanishes as the crystal packing is taken into account. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1343–1353, 1999
Keywords:quantum chemical calculations  photophysical properties  multiplet structure  intermolecular interactions  Jahn–  Teller distortion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号