首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A general nonaqueous route to binary metal oxide nanocrystals involving a C-C bond cleavage
Authors:Pinna Nicola  Garnweitner Georg  Antonietti Markus  Niederberger Markus
Institution:Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany.
Abstract:A widely applicable solvothermal route to nanocrystalline iron, indium, gallium, and zinc oxide based on the reaction between the corresponding metal acetylacetonate as metal oxide precursor and benzylamine as solvent and reactant is presented. Detailed XRD, TEM, and Raman studies prove that, with the exception of the iron oxide system, where a mixture of the two phases magnetite and maghemite is formed, only phase pure materials are obtained, gamma-Ga(2)O(3), zincite ZnO, and cubic In(2)O(3). The particle sizes lie in the range of 15-20 nm for the iron, 10-15 nm for the indium, 2.5-3.5 nm for gallium, and around 20 nm for zinc oxide. GC-MS analysis of the final reaction solution after removal of the nanoparticles showed that the composition is rather complex consisting of more than eight different organic compounds. Based on the fact that N-isopropylidenebenzylamine, 4-benzylamino-3-penten-2-one, and N-benzylacetamide were the main species found, we propose a detailed formation mechanism encompassing solvolysis of the acetylacetonate ligand, involving C-C bond cleavage, as well as ketimine and aldol-like condensation steps.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号