首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of a high-speed combustion front with a closely packed bed of spheres
Authors:Stefan Hlouschko  Gaby Ciccarelli
Affiliation:(1) Mechanical and Materials Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada
Abstract:The head-on collision of a combustion front with a closely packed bed of ceramic-oxide spheres was investigated in a vertical 76.2 mm diameter tube containing a nitrogen diluted stoichiometric ethylene–oxygen mixture. A layer of spherical beads in the diameter range of 3–12.7 mm was placed at the bottom of the tube and a flame was ignited at the top endplate. Four orifice plates spaced at one tube diameter were placed at the ignition end of the tube in order to accelerate the flame to either a “fast-flame” or a detonation wave before the bead layer face. The mixture reactivity was adjusted by varying the initial mixture pressure between 10 and 100 kPa absolute. The pressure before and within the bead layer was measured by flush wall-mounted pressure transducers. For initial pressures where a fast-flame interacts with the bead layer peak pressures recorded at the bead layer face were as high as five times the reflected Chapman–Jouget detonation pressure. The explosion resulting from the interaction developed by two distinct mechanisms; one due to the shock reflection off the bead layer face, and the other due to shock transmission and mixing of burned and unburned gas inside the bead layer. The measured explosion delay time (time after shock reflection from the bead layer face) was found to be independent of the incident shock velocity. As a result, the explosion initiation is not the direct result of the shock reflection process but instead is more likely due to the interaction of the reflected shock wave and the trailing flame. The bead layer was found to be very effective in attenuating the explosion front transmitted through the bead layer and thus isolating the tube endplate. This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.
Keywords:  KeywordHeading"  >PACS 47.40.-x  47.70.Fw
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号