首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal properties and fracture toughness of epoxy resins cured by phosphonium and pyrazinium salts as latent cationic initiators
Authors:Soo‐Jin Park  Gun‐Young Heo  Dong‐Hack Suh
Abstract:In this work, the latent thermal cationic initiators triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl‐2‐methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized and characterized with IR, 1H NMR, and P NMR spectroscopy. The thermal and mechanical properties of difunctional epoxy diglycidyl ether of bisphenol A (DGEBA)] resins cured by 1 phr of either TBPH or BMPH were investigated. The DGEBA/TBPH system showed a higher curing temperature and a higher critical stress intensity factor than the epoxy/BMPH system. This could be interpreted in terms of the slow thermal diffusion rate and bulk structure of the four phenyl groups in TBPH. However, the decomposition activation energy derived from the Coats–Redfern method was lower for epoxy/TBPH. This result was probably due to the fact that a broken short‐chain structure was developed by the steric hindrance of TBPH in the difunctional epoxy resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2393–2403, 2003
Keywords:initiators  thermal properties  fracture  activation energy  steric hindrance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号