首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The separation of out-of-plane displacement from in-plane components by fringe carrier method based on large image-shearing ESPI
Authors:Ping Sun
Institution:College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract:A fringe carrier method for separating out-of-plane displacement from in-plane components based on large image-shearing electronic speckle pattern interferometry (ESPI) is presented. If the test object is respectively illuminated by two expanded symmetric illuminations in large image-shearing ESPI, two interferometers are formed. Carrier fringe patterns can be introduced by tilting reference surface a small angle. The carrier fringe patterns are demodulated after deformation of the object. Two phase maps, which include out-of-plane and in-plane displacement, can be obtained by using Fourier transform. Then out-of-plane displacement can be easily separated from in-plane displacement by simple operation between two unwrapped phase distributions. The principle of spatial carrier frequency modulation in large image-shearing ESPI is discussed. A typical three-point-bending experiment is completed. Experimental results are offered. The results show that the method offers high visibility of carrier fringes. And the system presented does not need a special beam as a reference light and has simple optical setup.
Keywords:Electronic speckle pattern interferometry (ESPI)  Phase calculation  Carrier
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号