首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制
作者单位:1. 北京师范大学应用光学北京重点实验室和物理系,北京 100875
2. 中国科学院上海光机所,上海 201800
3. 上海应用技术大学材料科学与技术系,上海 200235
基金项目:The National Natural Science Foundation of China (51472028) and the Fundamental Research Funds for the Central Universities of China (2017TZ01)
摘    要:研究了纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制现象。测量了Er3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的X射线衍射谱、表面形貌、激发光谱、吸收光谱、和发光光谱;而且也与Tb3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的相对应的光谱参数进行了比较。发现378 nm光激发样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV所导致的652.0 nm红色发光强度为522 nm光激发时的680.85倍和303.80倍;我们还发现378 nm光激发所导致的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的 652.0 nm红色发光强度为样品(C) Er(0.5%)∶FOV 的491.05和184.12倍。我们还发现在378 nm光激发时的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的{978.0和1 012.0 nm}红外发光强度依次分别为样品(C) Er(0.5%)∶FOV 的{58.00和293.62}倍和{25.11和 67.50}倍。更进一步,对于652.0 nm波长发光的激发谱,发现(A) Er(1%)Yb(8.0%)∶FOV和(B) Er(0.5%)Yb(3.0%)∶FOV的378.5 nm激发谱峰强度是(C) Er(0.5%)∶FOV的大约606.02和199.83倍。同时,也发现样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的一级量子剪裁红外1 012或978 nm发光强度为样品(D) Tb(0.7%)Yb(5.0%)∶FOV的二级量子剪裁红外976 nm发光强度的101.38和29.19倍。发现的该量子剪裁是目前所报道的最强的量子剪裁。因此,相信所发现的氟氧化物纳米玻璃陶瓷中Er3+Yb3+离子对的一级量子剪裁发光是强的可以作为量子剪裁层应用到提高晶硅太阳能电池的发电效率。研究结果也能加速对目前国际热点的下一代环保的光谱调制太阳能电池的探索。

关 键 词:量子剪裁发光  光谱调制  太阳能电池  能量传递  Er3+Yb3+-双掺纳米相氟氧化物玻璃陶瓷  
收稿时间:2017-07-05

Intense Spectral Modulation by Quantum Cutting Luminescence of Er3+Yb3+ Ion-Pair in Nanophase Oxyfluoride Vitroceramics
Authors:CHEN Xiao-bo  LI Song  YU Chun-lei  WANG Shui-feng  ZHAO Guo-ying  MA Hui  ZHENG Dong  YANG Guo-jian  LIU Yuan  DENG Zhi-wei  HE Qing  HU Li-li
Institution:1. Applied Optics Beijing Area Major Laboratory and Physics Department, Beijing Normal University, Beijing 100875, China 2. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 3. School of Materials Science and Technology, Shanghai Institute of Technology, Shanghai 200235, China
Abstract:In this paper, the spectral modulation by the quantum-cutting luminescence of Er3+Yb3+ ion-pairs in nanophase oxyfluoride vitroceramics is studied. We obtained X-ray diffraction spectra, surface topographies, excitation, absorption, and luminescence spectra of Er3+Yb3+ nanophase oxyfluoride vitroceramics, and compared them with the corresponding parameters of a Tb3+Yb3+-codoped sample. We find that the 652.0 nm wavelength red luminescence intensity is enhanced by the factors of 680.85 and 303.80 for (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV, respectively, when they are excited by 378 nm light than when they are excited by 522 nm light. It is also found that the 652.0 nm red luminescence intensity is enhanced 491.05 and 184.12 times for (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV than (C) Er(0.5%)∶FOV when they are both being excited by 378 nm light. the results show that the {978.0 and 1 012.0 nm} infrared luminescence intensities of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are {58.00 and 293.62} and {25.11 and 67.50} times, respectively, larger than the corresponding ones of (C) Er(0.5%)∶FOV when both excited with 378 nm light. And further, the intensities of the 378.5 nm excitation peak of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are about 606.02 time and 199.83 times, respectively, larger than (C) Er(0.5%)∶FOV when 652.0 nm luminescence wavelength is selected as the fluorescence receiving wavelength to measure the visible excitation spectra in the range of 250~628 nm. Meanwhile, we also find that the first-order quantum-cutting infrared 1 012 or 978 nm luminescence intensities of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are about 101.38 and 29.19 times larger than the second-order quantum-cutting infrared 976 nm luminescence intensity of (D) Tb(0.7%)Yb(5.0%)∶FOV. To the best of our knowledge, present quantum-cutting obtained in our study is the most intense quantum-cutting reported to date. Therefore, we believe that present first-order quantum-cutting luminescence of Er3+Yb3+-codoped oxyfluoride vitroceramics may be intense for the material’s use as a quantum-cutting layer to enhance the photovoltaic conversion efficiency of crystal silicon solar cell. The results can facilitate the probing of next-generation environmentally friendly spectral-modulation solar cells, which are currently the focus of global attention.
Keywords:Quantum-cutting luminescence  Spectral modulation  Solar cell  Energy transfer  Er3+Yb3+-codoped nanophase oxyfluoride vitroceramics  
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号