首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase transition thermodynamics of phenyl and biphenyl naphthalenes
Authors:Marisa AA Rocha  Carlos FRAC Lima  Luís MNBF Santos  
Institution:aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
Abstract:This work is focussed on the thermodynamics of phase transition for some naphthalene derivatives: 1-phenylnaphthalene, 2-phenylnaphthalene, 2-(biphen-3-yl)naphthalene, and 2-(biphen-4-yl)naphthalene.The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the following compounds: 2-phenylnaphthalene (cr), between T= (333.11 and 353.19) K; 2-(biphen-4-yl)naphthalene (cr), between T = (405.17 and 437.19) K; 2-(biphen-3-yl)naphthalene (l), betweenT = (381.08 and 413.17) K. From the temperature dependence of the vapour pressure, the standard, (pring operator = 105 Pa), molar enthalpies, entropies, and Gibbs free energies of sublimation for 2-phenylnaphthalene and 2-(biphen-4-yl)naphthalene were derived as well as the standard molar enthalpy, entropy, and Gibbs free energy of vaporization for 2-(biphen-3-yl)naphthalene at 298.15 K. The temperatures and the standard molar enthalpies of fusion were measured by differential scanning calorimetry and the standard molar entropies of fusion were derived. For 1-phenylnaphthalene the standard molar enthalpy of vaporization at 298.15 K was measured directly using the Calvet microcalorimetry drop method.The 1-phenylnaphthalene is liquid at room temperature, showing a remarkably low melting point when compared to the 2-phenylnaphthalene isomer and naphthalene. A regular decrease of volatility with the increase of a phenyl group in para position at the 2-naphthalene derivatives was observed. In 2-(biphen-3-yl)naphthalene, the meta substitution of the phenyl group results in a significantly higher volatility than in the respective para isomer.
Keywords:Knudsen effusion  Enthalpy of fusion  Enthalpy of vaporization  Enthalpy of sublimation  Entropy of fusion  Entropy of sublimation  Gibbs free energy of sublimation  Vapour pressure  DSC  Calvet microcalorimetry  Phenylnaphthalene  Biphenylnaphthalene  Suzuki–  Miyaura
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号