首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study on photophysical properties of phenolpyridyl boron complexes
Authors:Yang Guochun  Su Tan  Shi Shaoqing  Su Zhongmin  Zhang Hongyu  Wang Yue
Institution:Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China.
Abstract:Organoboron complexes have potential application in organic light-emitting devices (OLEDs). Our group has synthesized four phenolpyridyl boron complexes (Inorg. Chem. 2006, 45, 2788), which can function as an electron transport materials (ETM), white and blue emitters, and exhibit high efficiency and stability. To reveal the relationship between the properties and structures of these functional materials, theoretical analysis of spectral properties and electronic structures of these complexes was systematically characterized with the B3LYP and 6-31G* basis set. The calculated absorption and emission spectra of these systems are in good agreement with the experimental ones. It is clear seen that these transitions are charge transferred along 2,6-bis(2-hydroxyphenyl)pyridyl boron moiety, and the contribution of boron atom in these compounds to the main transition orbitals is vanishingly small. The substitution of methyl and methoxyl for hydrogen does not change the absorption wavelengths and transition natures, but influences the radioactive efficiencies and electron transport properties, which are observed and discussed in detail. Furthermore, large red shifts of fluorescence are caused by replacing the hydrogen with CN or NO2 groups, which indicates that they are potential candidates as green-light-emitting materials. These results are favorable to further understanding the photophysical properties of this kind of complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号