首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic compression-shear response of brittle materials with specimen recovery
Authors:H. D. Espinosa  A. Patanella  Y. Xu
Affiliation:(1) School of Aeronautics and Astronautics, Purdue University, 47907 West Lafayette, IN
Abstract:A new configuration for compression-shear soft-recovery experiments is presented. This technique is used to investigate various failure mechanisms during dynamic multiaxial loading of an Al2O3/SiC nanocomposite and TiB2. Velocity profiles of the target surface are measured with a variable sensitivity displacement interferometer, yielding normal and transverse velocity-time histories. A dynamic shear stress of approximately 280 MPa is obtained, in the Al2O3/SiC nanocomposite, for an imposed axial stress of about 3.45 GPa on a 540 mgrm thick sample. This dynamic shear stress is well below the value predicted by elastic wave propagation theory. This could be the result of stress-induced damage and inelasticity in the bulk of the sample or inelasticity on the sample surface due to frictional sliding. To gain further insight into the possible failure mechanisms, an investigation of compression-shear recovery techniques, with simultaneous trapping of longitudinal and lateral release waves, is conducted.
Keywords:Fragmentation  damage  ceramics  impact  wave propagation  nanocomposites
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号