首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of plastic deformation on band gap, electronic defect states and lattice vibrations of rutile
Authors:Ulrich Gesenhues
Affiliation:Sachtleben Chemie GmbH Laboratories, P.O. Box 170454, 47184 Duisburg, Germany
Abstract:The extensive polygonization of 200 nm rutile crystals in high-energy dry milling allowed to study the spectral properties of grain boundaries and adjacent microstrained crystalline matter. Changes in UV, VIS, NIR, IR and FIR spectra during milling were followed. For the UV absorption edge the value of unstrained rutile was retained while residual traces of anatase, intergrown with the rutile phase, continued to act as traps for photoinduced charges. The evolving broad absorption in VIS and NIR could be attributed to electrons weakly bound to defects in the packing of oxygen anions at the grain boundaries, which may relax to face-sharing Ti3+-O octahedra. Among the IR-active lattice vibrations, the narrow Eu(2) band showed a shift to higher frequencies by 15 cm−1 which is definitively not due to phonon confinement or Fröhlich surface modes but probably to coupling of the bulk phonon to a plasmon at the grain boundary. At the external surface of the polygonized primary particle, the regular atomic order is destroyed by milling so that hydroxylation is replaced by physisorption of H2O, as shown by IR and TG.
Keywords:A. Oxides   C. Infrared spectroscopy   D. Defects   D. Optical properties   D. Phonons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号